Nekbone

Summary Version
2.1.2

Purpose of Benchmark

Nekbone captures the basic structure and user interface of the extensive Nek5000
software which is a high order, incompressible Navier-Stokes solver based on the spectral
element method. Nekbone solves a standard Poisson equation using a conjugate gradient
iteration with a simple preconditioner on a block or linear geometry. Nekbone exposes
the principal computational kernel to reveal the essential elements of the algorithmic-
architectural coupling that is pertinent to Nek5000. More details on the benchmark are
provided in the readme.pdf file included in the distribution.

Characteristics of Benchmark

Nekbone solves a standard Poisson equation using the spectral element method with an
iterative conjugate gradient solver with a simple preconditioner. The computational
domain is partitioned into high-order quadrilateral elements. Based on the number of
elements, number of processors, and the parameters of a test run, Nekbone allows a
decomposition that is either a 1-dimensional array of 3D elements, or a 3-dimensional
box of 3D elements. The benchmark is highly scalable and can accommodate a wide
range of problem sizes, specified by setting the number of spectral elements and the
polynomial order of the elements by editing the appropriate build and input files. The
benchmark consists of a setup phase and a solution phase. The solution phase consists of
conjugate gradient iterations that call the main computational kernel, which performs a
matrix vector multiplication operation in an element-by-element fashion. Overall each
iteration consists of vector operations, matrix-matrix multiply operations, nearest-
neighbor communication, and MPI Allreduce operations. The benchmark is written in
Fortran and C, where C routines are used for the nearest neighbor communication and the
rest of the compute kernel routines are in Fortran. The current version of the benchmark
uses MPI parallelism with no threading.

Mechanics of Building Benchmark:
* Change to the nekbone test/examplel directory
e Edit the SIZE file, if needed, to:
o set the maximum number of MPI ranks, Ip
o setthe maximum number of elements per rank, lelt
* Edit the makenek script and set:
o SOURCE_ROOT to the path to the nekbone source code
F77 to the name of the Fortran compiler
CC to the name of the C compiler
Uncomment IFMPI flag if not using MPI

O O O



o Uncomment and specify any link flags in USR_LFLAGS
o Uncomment and specify optimization flags, OPT_FLAGS_STD and
OPT_FLAGS_MAG
Run the makenek script. If makenek fails to recognize the compiler it will
generate a makefile and stop, the makefile may then be edited manually and
the code compiled by running make.
Run ‘make clean’ to remove previous build

Mechanics of Running Benchmark

1.

Small problem: single node and/or single CPU

* Compile as described above with or without MPI

* run nekbone

Medium problem: (<1K node) job

* Compile as described above with MPI enabled

* run nekbone

Large Sequoia problem:

* The Large Sequoia problem is defined as having 50,331,648 spectral
elements. The values in the data.rea file that determine the polynomial
orders (nx0, nxN, and nxD) are to be set to 9, 12, and 3 respectively. On
Sequoia the problem was run using 6,291,456 ranks in a 384x128x128
distribution with 8 elements per rank in a 2x2x2 distribution. The
number of MPI ranks and elements per rank used maybe any value so
long as total spectral element count remains 50,331,648 elements. The
values controlling the polynomial orders must remain fixed at 9,12, and 3.

* Compile as described above with MPI enabled and altering Ip and letl in
SIZE as required

* Edit data.rea to set the appropriate number of elements per process.

* run nekbone

CORAL class problem:

* The CORAL problem is defined as having approximately 2.5 million
spectral elements per petaflop of theoretical peak performance of the
system. The number of elements used may be any value within 5% of the
approximate value calculated for the system. A 100 PF system therefore
should use a total element count within 5% of 250 million elements.

* The total element count is the number of MPI ranks multiplied by the
number of elements per rank. The number of MPI ranks and number of
elements per rank must be chosen such that the total element count
meets the criteria specified above.

* The number of elements per rank is specified in the data.rea file by
setting values for iel0, ielN, and ielD. The values set for iel0 and ielN
should be the same and ielD should remain set to 1.

* The number of MPI ranks must be chosen such that the 3D process
distribution used has process counts in the X, Y, and Z dimensions
(reported as npx, npy, and npz in the standard output) that are all greater



than 2 and the ratio of the largest to smallest value in the set (npx, npy,
npz) is not greater than 5, unless restricted by unresolvable hardware
limitations. In cases where the value of this ratio exceeds 5 it must be
shown that no lower ratio could be achieved. For example (npx = 20, npy
=15, npz = 7) requires no justification, while (npx = 79, npy = 17, npz =
13) should be justified by hardware limitations.

* The process distribution (npx, npy, npz) may be set manually, provided it
meets the criterion above, by specifying npx, npy, and npz values in the
data.rea input. The benchmark will generate a distribution with a
minimal ratio if the value of npx*npy*npz does not equal the number of
MPI ranks.

* The local element distribution (mx, my, mz) may be set manually to any
value by specifying mx, my, and mz values in the data.rea input. The
benchmark will generate a distribution with a minimal ratio if the value
of mx*my*mz does not equal the value set for the local element count.

* The values in the data.rea file that determine the polynomial orders (nx0,
nxN, and nxD) are to be set to 9, 12, and 3 respectively.

* Compile as described above with MPI enabled and altering Ip and letl in
SIZE as required

* run nekbone

Verification of Results
The FOM to be reported is the average aggregate MFlop rate calculated and reported
in the nekbone output as “Av MFlops”. Benchmark results are considered correct if

the reported rnorm is small, generally less than 1x10-8, after 101 conjugate gradient
iterations.



